Asymptotic profiles for a wave equation with parameter‐dependent logarithmic damping

نویسندگان

چکیده

We study a nonlocal wave equation with logarithmic damping, which is rather weak in the low-frequency zone as compared frequently studied strong damping case. consider Cauchy problem for this model Rn, and we asymptotic profile optimal estimates of solutions total energy t → ∞ L2 sense. In that case, some results on hypergeometric functions are useful.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Exponent for a Nonlinear Wave Equation with Damping

It is well known that if the damping is missing, the critical exponent for the nonlinear wave equation gu=|u| p is the positive root p0(n) of the equation (n&1) p&(n+1) p&2=0, where n 2 is the space dimension (for p0(1)= , see Sideris [14]). The proof of this fact, known as Strauss' conjecture [17], took more than 20 years of effort, beginning with Glassey doi:10.1006 jdeq.2000.3933, available ...

متن کامل

Damping for the elastic wave equation

Résumé: Le but de ce projet est une investigation des techniques d’amortissement pour l’équation d’onde. Cette étude est intéressante tant du point de vue de la physique et que de l’analyse numérique. En effet l’amortissement apparâıt fréquemment dans les systèmes avec friction. Du point de vue mathématique, l’amortissement donne une meilleure régularité de l’équation élastique qui est importan...

متن کامل

On the Controllability of a Wave Equation with Structural Damping

We study the boundary controllability properties of a wave equation with structural damping ytt− yxx− 2ytxx = 0, y(0, t) = 0, y(1, t) = h(t) where 2 is a strictly positive parameter depending on the damping strength. We prove that this equation is not spectrally controllable and that the approximate controllability depends on the functional space in which the initial value Cauchy problem is stu...

متن کامل

Asymptotic Stability of the Wave Equation on Compact Surfaces and Locally Distributed Damping - a Sharp Result

This paper is concerned with the study of the wave equation on compact surfaces and locally distributed damping, described by utt −∆Mu+ a(x) g(ut) = 0 on M× ]0,∞[ , where M ⊂ R is a smooth oriented embedded compact surface without boundary. Denoting by g the Riemannian metric induced on M by R, we prove that for each ǫ > 0, there exist an open subset V ⊂ M and a smooth function f : M → R such t...

متن کامل

Fast Water Animation Using the Wave Equation with Damping

A simple method for animation of water waves is presented. The two-dimensional wave equation with damping is used to obtain a finite difference scheme for height distribution. A computational procedure employs explicit time integration. High frame rates are typically obtained for real-time animation of water waves.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods in The Applied Sciences

سال: 2021

ISSN: ['1099-1476', '0170-4214']

DOI: https://doi.org/10.1002/mma.7671